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Abstract

This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large
sparse systems of nonlinear equations. This method is a coupling of tensor model forma-
tion and solution techniques for nonlinear equations with Krylov subspace projection
techniques for unsymmetric systems of linear equations. Traditional tensor methods
for nonlinear equations are based on a quadratic model of the nonlinear function, a
standard linear model augmented by a simple second order term. These methods are
shown to be significantly more efficient than standard methods both on nonsingular
problems and on problems where the Jacobian matrix at the solution is singular. A
major disadvantage of the traditional tensor methods is that the solution of the tensor
model requires the factorization of the Jacobian matrix, which may not be suitable for
problems where the Jacobian matrix is large and has a “bad” sparsity structure for an
efficient factorization. We overcome this difficulty by forming and solving the tensor
model using an extension of a Newton-GMRES scheme. Like traditional tensor meth-
ods, we show that the new tensor method has significant computational advantages over
the analogous Newton counterpart. Consistent with Krylov subspace based methods,
the new tensor method does not depend on the factorization of the Jacobian madtrix.
As a matter of fact, the Jacobian matrix is never needed explicitly.

1 Introduction

This paper introduces a tensor-Krylov method for solving the nonlinear equations problem
given F: RN — RN find z, € ®" such that F(z,)=0. - (1.1)

Standard methods (such as Newton’s method) widely used in practice for solving (1.1) are
iterative methods that base each iteration upon a linear model of F at the current point z.,

M(z, +d) = F(z.) + J.d, (1.2)

where d € RV and J, € RV*N s either the current Jacobian matrix or an approximation
to it. When the size of J, is moderate or the sparsity structure of J. is favorable, many
effective ways of solving the linear model are based on the factorization of J¢ (for example LU
factorization). However, for many real world problems (often arisen in numerical solution
of ODEs and PDEs), J, is often large and has a sparsity structure that does not allow a
sparse factorization. The density of a full factorization would be so great that the storage
of such a factorization would be impossible even on the most powerful computer available
today due to unavoidable massive fill-ins. An attractive alternative to solving the linear
model is the use of Krylov methods, such as the GMRES method, which does not require
the factorization of J.. The distinct advantage of Krylov methods is their minimum storage
requirement and potential matrix-free implementations. Newton-like iteration schemes for
solving the nonlinear equations problem using Krylov subspace projection methods as an
inner linear solver are considered by many authors including Brown and Saad (5, 4], Chan
and Jackson [6], and Brown and Hindmarsh [3]. Their computational results show that



these methods can be quite effective for many classes of problems in the context of systems
of partial differential equations or ordinary differential equations.

The distinguishing feature of the Newton equation based algorithm is that if F° "(z)
is Lipschitz continuous in a neighborhood containing the root z., F'(z«) is nonsingular
and (1.2) is solved exactly (or to certain accuracy, e.g. see [4] for more details), then
the sequence of iterates produced converges locally and q-quadratically to .. This means
eventual fast convergence in practice. However, Newton’s (or Newton-like) method is not
usually quickly locally convergent, if #”(z.) is singular. This situation is analyzed and
acceleration techniques are suggested by many authors, including Reddien [23], Decker and
Kelley [8],[9],[10], Decker, Keller and Kelley [7], Kelley and Suresh [17], Griewank and
Osborne [15], and Griewank [14]. In summary, their papers show that when the Jacobian
at the solution has a null space of dimension one, then from good starting points, N ewton’s
method is locally Q-linearly convergent with constant converging to % The acceleration
techniques presented in these papers depend upon a priori knowledge that the problem is
singular.

Tensor methods for nonlinear equations introduced by Schnabel and Frank {26] are
intended to be efficient both for nonsingular problems and for problems with low rank
deficiency. These methods augment the standard linear model by a low rank second order
term, in a way that requires no additional function or Jacobian evaluations per iteration,
and hardly more arithmetic per iteration or total storage, than Newton’s method. The
second order term supplies higher order information in recent step directions; when the
Jacobian is (nearly) singular, this usually results in supplying information in directions
where the Jacobian lacks information or correspondingly, where the second order terms
have the greatest influence. Tensor methods are shown to be considerably more efficient
and robust than standard methods on both singular and nonsingular systems of nonlinear
equations, with a larger margin of advantage on singular problems. As a matter of fact,
Feng, Frank and Schnabel [13] show that on an appreciable class of singular problems,
tensor model based methods exhibit multi-step (2-step or 3-step) g-superline convergence,
whereas Newton’s method has only linear convergence.

The traditional tensor methods are based on the factorization of the Jacobian matrix
at each iteration, which makes them unsuitable for large systems of nonlinear equations
where the factorization of the Jacobian matrix is too expensive. The goal of this paper is
to develop a tensor-like iterative scheme for solving systems of nonlinear equations using
Krylov subspace projection techniques. We will refer this method as the tensor-GMRES
method. This method is independent of Jacobian factorization and can have Jacobian-free
implementations. In addition, this method is intended to inherit the advantage of tradi-
tional tensor methods over the standard Newton’s method both on singular and nonsingular
problems.

Tensor-Krylov methods were first considered by Bouaricha in his Ph.D. thesis {2]. The
basic idea is to solve the tensor model by calling a Krylov method for linear equations
twice in each tensor iteration. Although the second call of the Krylov method might be
less expensive (due to possible good initial guess) close to the solution, the computational



cost of one iteration of tensor methods based on this idea is likely twice as expensive as
one iteration of analogous Newton-Krylov methods when away from the solution. This
difficulty could make these tensor methods not competitive with its Newton counterpart in
many situations.

This paper gives the tensor-GMRES method that requires no more function and deriva-
tive evaluations, and hardly more storage or arithmetic per iteration, than the analogous
Newton-GMRES method. This is achieved by asking the tensor term in the tensor model
to have a more restricted form than that in the traditional tensor model. The restriction
imposed will have minimal impact on the performance of the tensor method, which is partic-
ularly true for problems where the Jacobian matrix is rank deficient or ill-conditioned at the
solution. We discuss the formation and solution of the tensor model, and present our com-
putational results. Like many Newton-Krylov algorithms, we show that the tensor-GMRES
method introduced here can have efficient matrix free implementations.

We should point out that the basic idea of this paper can be used as a guidance for
devising related tensor-Krylov methods such as tensor-Arnoldi, tensor-QMR. and tensor-
BiCG (these are under consideration by the authors). Due to nontrivial technical differences
between these Krylov subspace based linear system solvers, we do not attempt to give a
unified treatment of these tensor-Krylov methods, instead, we only concentrate on the
tensor-GMRES method in this paper.

We would like to introduce some notation that will be used later on in this paper. We
denote the solution to the system by z., and a current iterate by z. or z; throughout this
paper. Consistent with tradition, we denote F'(z) by J(z) and usually abbreviate J (z¢),
J(z«) as J. , J, respectively. Similarly, we often abbreviate F(z.), F(z.), F"(z.), and
F'(zy) as F. , Fi, F! , and F respectively. The notation || || denotes the Euclidean vector
norm. We use N to denote the length of z, which is the number of variables (equations
also) in the system.

This paper is organized as follows. Section 2 briefly reviews the Arnoldi process, the
GMRES algorithm and a line search Newton-GMRES algorithm. The traditional tensor
methods for nonlinear equations are reviewed in Section 3. The main contribution of this
paper is Section 4 which introduces the formation and solution of the new tensor-GMRES
model. The implementation of the tensor-GMRES algorithm is given in Section 5. Compar-
ative test results for our implementation of the tensor-GMRES method versus the analogous
implementation of the Newton-GMRES method are also reported in this section. Finally,
in Section 6, we summarize our research and make some brief comments on areas for future
related research.

2 Newton-GMRES method for systems of nonlinear equa-
tions

The GMRES (Generalized Minimal RESidual) method was introduced by Saad and Schultz
[24] for solving large unsymmetric systems of linear equations. This method is very effective
when coupled with preconditioning techniques. It is also very competitive compared to other



iterative methods. Since the GMRES method is a Krylov subspace method, we first give a
brief review of the Krylov subspace.

Given a matrix A € RVXN_ a vector v; € R and an integer m > 1, the Krylov subspace
associated with A, v; and m is defined as

K..(4,v1) = span{vy, Avy, Ayq, .-, A™ 1o}
Consider a system of linear equations
Az = b. (2.1)

Given an initial guess o to the solution of the linear system, the initial residual is defined
as

To = Amo—b.

The GMRES method attempts to find z,, € K,z(A, o) such that the residual vector A(zo+
Zm) — b is small, or in other words, Zo + zn (approximately) solves (2.1). This is done in a

fashion that at each iteration the residual norm is minimized.
The GMRES method is based on the Arnoldi process [1] which uses the Gram-Schmidt
method to compute an lo-orthonormal basis {v1,v3," -, vm} of the K..(A,v) as follows.

Algorithm A: Arnoldi.

(A-1) Start. Choose a vector v; such that |ju]| =1

(A-2) Iterate. For j =1,2,---, do

hi,j = (A’l)j,'l),’),i:l,2,---,j,
: J
’i)j.*.l = A’Uj - Zhi,j'via
=1
hiv; = |954ll;
vigr = Djpa/hjrge

As consequences of m iterations of the Arnoldi algorithm (assume it does not break down,
i.e., ||dj+1]| does not vanish throughout), we have m + 1 orthonormal vectors vy, -+, Um41,
and an (m+ 1) X m Hessenberg matrix H,,, whose nonzero entries are given by h;; produced
by the algorithm. Let Vi, = [v1,- -, vm]. As an important fact, the relation

AV, = m+1 I_{m

holds after each Arnoldi iteration.
The GMRES scheme is based on solving the least squares problem:

min [If — A(zo + zm)l| = min |lro — Azmll, (2-2)
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where 1o = f — Azo. If we set 2, = Vpuy, vy = ro/||rol| and f = ||ro|, this is equivalent to
solving

Jnin, [|Bvr — AV,

= min |[Viny1(Ber — Hny)|

o Bl 2.
min [|Ber = Ay (23)

The least squares problem (2.3) is solved via a QR factorization of H.,,, which is fairly
inexpensive because of the Hessenberg form of H,,. When m is small the cost of solving
(2.3) is minimal. Based on above observations, the GMRES algorithm for solving systems
of linear equations is devised.

Algorithm G: GMRES.

(G-1) Start. Choose zo and compute rg = f — Az and v = ro/||70]l-

(G-2) Tterate. For j = 1,2,---,m, - - - until satisfied do:

hi»j = (A’l)j,’l),‘),i:l,Z,---,j,

J
bip1 = Av;— Y hijv,
1=1

hivi; = 94l
Vier = Djp1/hjp;

(G-3) Form the approximate solution:
Tm = 0 + VimYm where y,, minimizes ||Be; — Hpym||, v € R™.

Due to memory limitation, it is necessary to restrain the number of Arnoldi iterations
taken in (G-2). This leads to restarted versions of GMRES. The idea is to use the GM-
RES iteratively by restarting the algorithm every m steps, where m is some fixed integer
parameter. Using the GMRES as a linear system solver, one can obtain a Newton-GMRES
algorithm for nonlinear equations. At each iteration of the nonlinear algorithm, a (or an
approximate) solution to the linear system

Jod = —F,, (2.4)

with J. being the current Jacobian matrix and F. being the current function value, must
be obtained. The Newton-GMRES method is an inexact Newton method, in the sense
that at each iteration, the Newton-like step is obtained by solving the Newton equation
approximately instead of “exactly”. The step obtained in this way is required to be a
descent direction for the function || F(z)||?. As a matter of fact, when the Newton equation
is solved accurately enough (see [4] for details), the step obtained always gives a descent



direction for FIIF(2)||?. Afterwards, a global convergence strategy such as backtracking line
search is employed to determine the step length along this descent direction, which will
force progress towards the solution.

Algorithm NG: An iteration of the Newton-GMRES.
Given zx, Ji € RY*N and F; € RN

(NG-1) Choose ¢ € [0,1).
(NG-2) Do GMRES (restart if necessary) to find d” = do + Vi y™ such that
F, + Jipd"® = 7, with ”"'k”/”Fk” < €k,

where dy is the initial guess to the solution of the Newton equation, and the
columns of V,, form an orthonormal basis for the Krylov space generated by the
Arnoldi process.

(NG-3) Find X > 0 using a backtracking line search global strategy and form the next
iterate T4 = T + Ad™.

The residual vector 7 is the amount by which d" fails to satisfy the Newton equation
Jid + Fp = 0. The forcing sequence ¢ is used to control the level of accuracy. The global
and local convergence of inexact Newton methods is analyzed by Brown and Saad [4]. Their
theory implies that if the sequence ¢, — 0, then under conditions (such as the Jacobian
matrix is nonsingular at the solution) the iterates generated by Algorithm NG converges
to the solution superlinearly; the convergence is quadratic if € = O([|Fg||). This means
eventual fast convergence in practice for nonsingular problems.

An attractive feature of Newton-Krylov algorithms is that the explicit computation of
the Jacobian matrix is never needed. This is owing to the fact that the only computation
involving the Jacobian matrix is the product of the Jacobian matrix and a vector, which
can be approximated by finite difference

F(z + ov) — F(:z:),

J(z)v = (2.5)

with a small number o (see e.g. [11] for details).

3 Traditional tensor methods for nonlinear equations

The tensor model introduced by Schnabel and Frank [26] is a quadratic model of F(z)
formed by adding a second order term to a linear model, giving

Mr(zo+ d) = F(zo) + Jod + %Tcdd, (3.1)

where T, € RV*XNXN is intended to supply second order information about F(z) around
.. The second derivative of F(z) at ., F"(z.) € RV*NXN js an obvious choice for T, in
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(3.1). However this choice for T, has several serious disadvantages that preclude its use in
practice. These include the computation of N3 /2 second partial derivatives of F(z) and a
storage requirement of at least N3/2 real numbers for F" (zc). Furthermore, to utilize the
model (3.1) with T, = F"(z.), at each iteration one would have to solve a system of N
quadratic equations in N unknowns, which is expensive and might not have a root.

The difficulties associated with the use of 7, = F"(z) in (3.1) are overcome in tensor
methods by choosing T to have a restricted low rank form. This can be considered as an
extension to second order objects of the low rank update methods used to approximate
Jacobian or Hessian matrices in secant (quasi-Newton) methods. One difference is that
for reasons of efficiency in arithmetic cost and storage, at each iteration the zero tensor is
updated rather than the tensor from the previous iteration.

Formation of the tensor model in Schnabel and Frank [26] is based upon the interpo-
lation of information from past iterates, and requires no additional function or derivative
evaluations. This is done by selecting some set of independent past iterates Ty, Ty
and requiring the model (3.1) to interpolate the function values F(z_i) at these points.
That is, the model is required to satisfy

1
F(x_k) = F(xc) + F/(xC)Sk + iTcsksk, k = 1, * e "p)

where sy = z_x — 2., k = 1,---,p. The directions {sk} are required to be strongly linearly
independent, which usually results in p being 1 or 2, although an upper bound of p< VN
is permitted. Then T, is chosen to satisfy

ming, cpnxnxy ||T¢||F

subject to Tespsi = zx, k= 1,-- -, p, (32)

where ||T;||7, the Frobenius norm of T, is defined by

N N N

1Tl = 323 S (T[4, k)%,

=1 j=1 k=1
and zx € RV is defined as z, = 2(F(z k) — F(zc)~ F'(2.)st). The solution of (3.2) is given
by
p
T. = ) agskss, (3.3)
k=1

where ay is the kth column of A € RVXP_ A is defined by A=ZM™', M € RP*? is defined
by M[i,j] = (sFs;)?,1<4,5<p, and Z € RNX? by column k of Z = Zg, k=1,---,p.
Substituting (3.3) into the tensor model (3.1) gives

Mr(z.+d) = F(z.)+ F'(z.)d + % i ar(std)?. (3.4)
k=1



The additional storage required by T is 2p N-vectors, for {ax} and {si}. In addition, the 2p
n-vectors {z_} and {F(z_¢)} must be stored. Thus the total extra storage required for the
tensor model is at most 4 N1 since p < v/N, which is likely to be small compared to the N 2
storage required for the Jacobian. The entire process for forming T, requires N 2p4+O(Np?)
multiplications and additions. The leading term comes from calculating the p matrix-vector
products F'(z.)sk, k = 1,--+,p; the cost of solving A = ZM-1is O(Np?). Since p < VN,
the leading term in the cost of forming the tensor mode] is at most N 25 multiplications and
additions per iteration, but it is usually only a small multiple of N2 arithmetic operations in
the dense case since p is usually 1 or 2. This cost also is small compared to the at least N3/3
multiplications and additions per iteration required for the dense matrix factorizations by
standard methods that use analytic or finite difference derivatives. If F'(z) is large and
sparse, the additional cost is simply p matrix-vector products, which generally is small in
comparison to the costs of a standard iteration.

Solution of the tensor model with the special form of T, given by (3.3) also can be
performed efficiently in terms of algorithmic operations. The goal is to find a root of the
tensor model (3.4), that is,

find d € RN such that

Mrp(z.+d) = F(zc) + Fl(zc)d + 3 Xp: ar(std)? = 0. (3.5)
k=1

Since (3.5) may not have a root, it is generalized to solving

in || Mz(zc + d)|a- 3.6
Inin || Mr(ze + d)l2 (3.6)

Schnabel and Frank [26] show that the solution of (3.6) can be reduced, in O(N?p)
operations, to the least squares solution of a system of ¢ quadratic equations in p unknowns,
plus the solution of a system of N —g linear equations and N —p unknowns. (Usually, ¢ = p;
the exceptional case ¢ > p arises when the system of N — p linear equations and N — p
unknowns would be singular and generally only occurs when rank(F'(z.)) < N — p.) This
reduction is carried out by performing orthogonal transformations of both the variable and
equation spaces in a way that isolates the quadratic terms into only p equations. The details
of this process are not important to this paper, because here we deal solely with models
where p = 1, in which case the tensor model can be solved much more simply and in closed
form. For these reasons we do not discuss the solution algorithm further in this paper; for
details, see [26]. The total cost of solving the tensor model is about 2N3/3+ N?p+ O(N?)
multiplications and additions in the dense case, at most N2p < N multiplications more
than the QR factorization of an N X N matrix. The process generally is numerically stable
even if F'(z.) is singular but has rank > N — p. If F'(z.) is nonsingular, the Newton step
can be obtained very cheaply as a by-product of the tensor model solution process. If F'(z.)
is large and sparse, the tensor model solution still costs very little more than the standard
Newton iteration, see [2].

In practice, computational results in [26] show the tensor method is more efficient than
an analogous standard method based upon Newton’s method on both nonsingular and
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singular problems, with a particularly large advantage on singular problems. In tests on a
standard set of nonsingular test problems, the tensor method is almost always more efficient
than the standard method and is never significantly less efficient. The average improvement
by the tensor method is 21 — 23%, in terms of iterations or function evaluations, on all test
problems, and 36 — 39% on the harder problems where one method requires at least ten
iterations. The tensor method is considerably more efficient than the standard method
on problems with rank(F'(z.)) = N — 1; the average improvement is 40 — 43% on all
problems and 57 — 61% on the harder problems. The advantage of the tensor method over
the standard method on problems with rank(F” (z+)) = N — 2 is not as great as for the
rank(F'(z4)) = N —1 case but is still considerable, an average of 27 — 37% improvement on
all problems and 57— 65% on the harder problems. More recent computational experiments
in [2], including experiments on much larger problems, show similar advantages for tensor
methods.

It is shown in [13] that under mild conditions that the sequence of iterates generated
by the tensor method based upon an ideal tensor model converges locally and two-step
Q-superlinearly to the solution with Q-order -g—, and that the sequence of iterates generated
by the tensor method based upon a practical tensor model converges locally and three-step
Q-superlinearly to the solution with Q-order % In the same situation, it is known that
standard methods converge linearly with constant converging to % Hence, tensor methods
have theoretical advantages over standard methods. The analysis in [13] also confirms that
tensor methods converge at least quadratically on problems where the Jacobian matrix at
the root is nonsingular.

4 Tensor-GMRES method for nonlinear equations

4.1 Introduction

As reviewed in the previous section, traditional tensor methods for nonlinear equations are
more successful both in theory and in practice than standard methods, notably for their fast
local convergence and their efficiency in arithmetic cost per iteration. Nevertheless, since
these methods are based on the factorization of the Jacobian matrix (or its approximation),
they may not be attractive for many classes of large and sparse systems. Newton-Krylov
methods are very effective in many situations for nonlinear equations problems. They often
have fast local convergence as analyzed by Brown and Saad [4]. However, the fast local
convergence can be impaired when the Jacobian matrix is singular or ill-conditioned at the
solution. This is not uncommon in practice and accounts for a substantial amounts of the
failures of Newton-like methods. The tensor method introduced here is primarily intended
to improve upon the Newton-Krylov methods in cases where the Jacobian matrix is singular
or ill-conditioned at the solution. This is done in a fashion similar to the N ewton-GMRES
method that avoids the requirement of the factorization of the Jacobian matrix by the
traditional tensor methods. As a matter of fact the Jacobian matrix is never explicitly
needed. In addition, the new method will have similar efficiency in arithmetic cost per



iteration to Newton-GMRES method. .

The tensor model considered here uses only one past iterate information. There are three
reasons for this. First, from the computational experience with tensor methods for nonlinear
equations, the tensor methods that use one past point are easler to implement and have
more satisfactory computational performance in practice. Second, from theoretical point
of view, tensor methods based on single past point are better understood. Third and more
importantly, the tensor model based on using more past points may require significantly
more storage than the Newton-GMRES method since the latter only requires O(N) (N being
the size of the problem) memory locations and the storage of each past iterate information
requires O(IV) locations as well. The situation is much different for the traditional tensor
model based methods where p, the number of past points used, can be as high as VvN.

The major difference between the new tensor model and the traditional tensor model
is that the new tensor model has a more restricted second order term. The analysis of
tensor methods for nonlinear equations by Feng, Frank and Schnabel [13] indicates that
tensor methods will not lose fast local convergence on singular problems if the tensor term
is projected into proper subspaces. As a matter of fact, we can show that for problems
where the Jacobian matrix has rank deficiency one at the solution, if the second order
term in the tensor model is projected into the subspace spanned by the left singular vector
corresponding the smallest singular value of the Jacobian matrix, the theoretical results
given in [13] remain intact. This means that methods based on the tensor model with the
projected second order term will have fast local convergence on singular problems. This
is the theoretical foundation of our tensor-GMRES method. The idea of projected tensor
methods was first implemented in [12] for constrained optimization, where the projection is
taken place in the variable space. The difference here is that the projection occurs in the
function space.

This section is organized as follows. We first analyze two ideal tensor models that are
closely related to our new tensor-GMRES model in Subsection 4.2. The formation and
solution of the tensor-GMRES model is discussed in Subsections 4.3 and 4.4. We give a
work comparison between the tensor-GMRES method and the analogous Newton-GMRES
method in Subsection 4.7.

Some notation is also useful to us. Throughout this section we use N to denote the
number of unknowns in the Newton equation and NZ to denote the number of nonzero
elements in the Jacobian matrix.

Let F'(z.) = UCDCVCT be the singular value decomposition of F'(z) at z., where U, =
[u$, uS, -« -, us), Ve = [vf,95,- -, v%]), and D, = diag|of, 03, - -,0%), with of 2 05 2 +-- 2>
% > 0 being the singular values of F'(z.) and {ug}, {vf} being the corresponding left and
right singular vectors.

Similarly, let F'(z,) = UDVT. Let v and u be the right and left singular vector of
F'(z,) corresponding to the zero singular value, when F’(z.) has rank deficiency one.
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4.2 Analysis of tensor methods using projected second order derivatives

The sequence of iterates produced by our algorithms is invariant to translations in the
variable space. Thus no generality is lost by making the assumption that the solution
occurs at z, = 0, and this assumption is made throughtout this subsection. We also assume
that vf; and uf; are so chosen that ||v§ —v|| = O(J|z.||) and [|lufy — u|| = O(]|z.||), whenever
z. is sufficiently close to z,. This assumption is valid from the theorems about continuity
of eigenvectors in Ortega [20] and Stewart [27], as long as F'(z) is continuous near Zx, and
has rank deficiency no greater than one at z,.

Before going into the details of the analysis, we give Assumption 4.0, a group of as-
sumptions that will be invoked for the remainder of this subsection in every result involving
F(z). These assumptions basically state that near z;, the second order term supplies useful
information in the null space direction of F'(z,), where F'(z,) lacks information.

Assumption 4.0 Let F : RV — RN have two Lipschitz continuous derivatives. Let F (z) =
0, F'(z.) be singular with only one zero singular value, and let u and v be the left and right
singular vector of F'(z.) corresponding to the zero singular value. Then we assume

W F"(z oo # 0 (4.1)

where F"(z,) € RVXNXN,

Assumption 4.0 is satisfied by most problems with rank(F” (z.)) = N — 1, and has
been assumed in most papers that analyze the behavior of Newton’s method on singular
problems. When N = 1, Assumption 3.0 is equivalent to f”(z,) # 0. :

Suppose we know the right and left singular vectors vy and u§; corresponding to the
least singular value of F'(z.) where z. is the current iterate and ||v5|| = flufs]| = 1. Then
an excellent tensor model around z., if one is to utilize just a rank-one second order term,
is

1
Mz, (ac+ d) = F(z.) + F(a)d + 5 (uheuss D)ool ), (4.2)

where a. = F"'(z.)v{v%, because it contains the correct. second order information where
the Jacobian contains the least information, and correspondingly, where the second order
term has the greatest influence.

Based on (4.2), a simple tensor algorithm, Algorithm PT, is designed.

Algorithm PT: Projected Tensor Algorithm.

IF (4.2) has real roots THEN
d < dp where dp solves Mr, (z.+d)=0

ELSE d « dpr where dps minimizes M7, , (2. +d)l| O

Since (4.2) is the basis for our new tensor-GMRES model, we give an analysis of Algo-
rithm PT.
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Corollary 4.1 Let Assumption 4.0 hold and {z}} be the sequence of iterates produced by
Algorithm PT. There exist constants Ky, K, such that if ||zo|| < K1, then the sequence {zx}
converges to z, and

3
lzkrall < Kallzkll?
fork=10,1,2,---

Proof. Note that I = YN wéu¢T and J, = N, ofuévsT. From the orthogonality of uf,
1==]1 Y1 % 1==1 Y1 %1 Ve g 1
i1=1,---, N, we have

Mr, (2. + d)

N N
(L wfus (e + 3 ofufof” d + J(ufrui Dac(oi” d))

=1 =1
N-1
(> (05" d + uf T Fo)ug]

i=1

+(osviTd + uiT Fe+ Lug T ac(vi d)?)uy (4.3)

l

Note that the difference between (4.3) and (4.2) of [13] is only a second order term in the
coefficient of each u$ for i = 1,---,N — 1, which does not effect either of the proofs of
Lemmas 4.1 and 4.2 of [13]). The rest of the proof can be completed by following exactly
the proof of Theorem 4.4 of [13]. O

Now we look at an interesting tensor model that is closely related to (4.2). Let W €
RVXm with m < N orthonormal columns. Consider the tensor model

Mry, (20 + d) = F(zo) + F(se)d + %(WWT)ac(vaT 4y, (4.4)

where u$; = Wy for y # 0, or uf; is in the span of the column vectors of W.

Corollary 4.2 Let Assumption 4.0 hold and {z}} be the sequence of iterates produced by
Algorithm PT with u$; being replaced by W. There exist constants Ky, K, such that if
lzol| < K1, then the sequence {xi} converges to x, and

3
llzksall < Kollzkll2
fork=10,1,2,---
Proof. Since u§, = Wy, from the orthogonality of columns of W, we have

wulyTWWT = wlyTWIWWT = ufyTWT = w§ui”. (4.5)
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By similar reasoning as stated in the proof of Corollary 4.1, and using (4.5)
Mz, (zc+ @)

N N
= (S uu)(Fet Y ofuesTd + %(WWTmC(v%sz)?)
=1

=1

il

N-1
(3 (ofosTd + wiT Fe + %uiT(WWTmc(v?de)?)uﬂ
1=1

+(oGvkT d+ Y %ufvTac(vaTd)z)uﬁv. (4.6)

Again, note that the difference between (4.6) and (4.2) of [13] is only 2 gecond order term
in the coefficient of each u¢ for ¢ = 1,--,N—-1 which does not effect either of the proofs
of Lemmas 4.1 and 4.2 of [13]. The rest of the proof can be completed by following exactly
the proof of Theorem 4.4 of (13]. O :

4.3 Formation of the tensor model

At the current iterate z., assume that the Newton equation
F.+Jd" =0 (4.7)

is solved by the GMRES method with d* = VinYm (assuming starting from zero). Let H.,
be the (m+1)Xm Hessenberg matrix from the Arnoldi process. An interesting fact is that
the resulting Newton step d" is in the span of the column vectors of V. The analysis of
Feng, Frank and Schnabel [13] indicates that when the J acobian matrix has & null space of
dimension one at the solution, close to the solution, the Newton iterates fall into a funnel
around the null space. In this situation, their theory also implies that the angle between d"
and ¢, the right singular vector corresponding to the smallest singular value of the current
Jacobian matrix J., will be arbitrarily close to zero, close to the solution. As a consequence
of d®* = Vin¥m, VN will be arbitrarily close to being in the span of the column vectors of
V- Consequently, i that is in the same direction as Jcvn will be arbitrarily close to being
in the span of the column vectors of J, V. Hence 2 good approximate to the projection
matrix WWT in (4.4) would be the projection matrix

P= (Jch)[(Jch)T(Jch)]‘l(Jch)T . (4.8)

The singular vectors and the exact second order derivatives used in (4.4) are normally
too expensive to obtain. We approximate them in the following manner. As in the situation
of the traditional tensor model (3.4),let 8¢ = Tp ™ x., the difference between the past iterate
z, and the current iterate Ze. There are two choices for approximating v§ in (4.4), One
is using d"/ ||d™|| since the Newton step d" is likely to be along the null space close t0 the
solution for singular problems. Another one is using h = se¢fllscll since when consecutive
iterates are in the funnel around the null space near the solution, the difference between the
two consecutive iterates is also likely to be along the null space. We choose to use b because,
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as we will see later, this wil cause our tensor mode] to interpolate 3 Past point in a Projected
functjon Space. The ability of interpolating Past points is vita] for the success of traditiona]
tensor methods for nonlinear equations on both singular and nonsingular problems. The
term q, = F”(xc)v,cvva in (4.4) can be approximated by

a = 2(F("7p) ~ F(z.) - J(xc).sc)

sTs,

= (2. )hh 4 E, (4.9)

where || E|| = O(llscll). Equation (4.9) is standard ip tensor model formation, whicp, requires
o extra function or Jacobian matrix evaluations,
Putting all the pieces together, we arrive at the following tensor mode].

Mz, (z. + d) =F.+J.d+ 3 Pa(hTd)? (4.10)
where P is given by (4.8). It is €asy to verify that the unprojected tensor model
Mr(zc+d)= F, 4 Jed + Ja(hTq)? (4.11)
interpolateg the function value at the Past point Tp. Hence, from
PMr,(z. 4+ d) = PF. 4+ PJ.d+ 3 PPa(hT )2

PF. + PJ.4d+ 3 Pa(hTd)?
= P(F.+Jd+ 2a(hTd)?),

the interpolation Property of the fyl] tensor mode] (4.11) implies that the Projected tensor
mode] (4.10) interpolates F(z) at the Past z, in the subspace resulted from the pro Jjection of
P onto the fuy] function Space. It is easy to see also that the tensor mode] (4.10) interpolates
F(z) at the current point jn fyj function Space. A second property of (4.10) is that when
m = N, The Projector matrix p is equal to identity, which recovers the full tensor mode]

the next subsection.

4.4 Solution of the tensor mode]

Solving the tensor mode] (4.10) in the full variable space s not preferable since it would
be as expensive ag solving the fuJ] tensor model, Ag discussed in Section 1, solving the full
tensor model coylg involve calling a Kryloy method for lineay equations twice, which could
be expensive in many situations, Ap alternative is to solve (4.10) in the Krylov subspace.
When the J acobian matrix lacks the first order information, close to the solution, the ma jor
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error of the current iterate would likely reside in the space spanned by v§;. Hence, we would
like the tensor step to be along v§; so that it would have the biggest effect on reducing the
error. Since v, is arbitrarily close to being in the span of the columns of V,,, it is reasonable
to require that the tensor step be in the span of the columns of V,,.

Therefore we would like to solve the least squares problem

. T
Iin |Fe + Joz + S Pa(h”2)?, (4.12)

which is equivalent to solving

min |Fe + JeVimy + 2 Pa(RTV,,0) (4.13)
y m

Recall_ that J.Vip = Vg1 B Let H,, = QR be the QR factorization of H,,. (Note
that Qn, is the product of m Givens rotations; for details see [24].) From (4.8),

P = Vm+lQmRm[(Vm+1Qm Rm)T(Vm+IQmRm )]_I(Vm-i-lQ_m Rm)T
= Vnt1QmBRm(RLRy)'REQIVE,

_ Im 0 —
= Vm+1Qm( 5 o >Q£V$+1. (4.14)

Using (4.14) and ro = —F, and letting b be the first m components of QL VI, a, (4.13) is
equivalent to

. = = b
yrgéa% | =70+ V41 Hny + 3Vim41@m ( 0 ) (R V)2l

_ - = (b
= mig [Vnsa(lrolles = Qm Brmy — 3G ( . ) (KT Vg P

yeR™

= 1@l - By = ( ) 67V

= min |jw— RLy — b(hTV,y)? (4.15)
yeER™

where w is the first m components of QT ||ro|le; and RL is the first m rows of R,,. An
interesting feature of (4.15) is that if the system of quadratics has a root, the minimum norm
of the tensor model in the Krylov space will be the absolute value of the last component
of Q7 ||ro|le1, which is the same as the residual norm of the Newton equation solved by the
GMRES algorithm. When R!, is nonsingular, using the techniques for solving the tensor
model developed in [2], we form the 8 function

a(B) = RTVu(RL)'w - hTVy — JRTV,(RE) H0(AT Viny)?
= AT(RL)'w - B — LAT(RL )62, (4.16)
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where 8 = hTV,,y and h = V.Lh, and solve the minimization problem

min [|g(8)l]- (4.17)

peR

Let S, be a solution to (4.17). By the theory established in [2], (4.15) is solved by
vt = [(Rr)T (B ha(Ba) fw + (RL) ™ w ~ 5(R,) 1062,

where w = AT[(RL )T(RL )] 'h. Then the tensor step for the system of nonlinear equations
is given by

d' = Vil (4.18)

Compared to the solution of the Newton equation by the GMRES algorithm, the solution
of the tensor model requires a minimal amount of extra work. The major extra work comes
from forming df from (4.18) and the calculation of V,Th and V,Ia, each requiring mN
multiplications. In addition, forming the § function requires one extra backsolve of an
m X m triangular system and two dot-products of vectors of length m, costing %m2 +
2m multiplications; forming b needs an applications of m Givens rotations, costing 4m
multiplications; forming [(RL)T(RL)]~1h requires two backsolves of an m x m triangular
system, costing m? multiplications, and then forming w needs a dot-product of two m-
vectors, costing m multiplications. In summary, the total extra cost of solving the tensor
model is 3mN + $m? + Tm.

4.5 Dealing with dy # 0

Because of the memory limitation, it is necessary for the GMRES algorithm to restart. As
a result, the solution to the Newton equation obtained from the GMRES algorithm is given
by d* = dg + Viry™. In this situation, d"™ is in the span of {do, Vi, }, instead of in the span
of {V,,} only, as in the situation of dg = 0. For reasons discussed before, we would like
the tensor step to be in the span of {do, V;}. Consequently, we would like the projection
matrix P to be onto the subspace spanned by {J.Vy,, J.do}. One choice of such a P is

P=MM M) *MT
where M = J[V,,,do]. Hence we would like to solve

: ' 1p, (1T N2
de{flroligl(m | Fe + Jod + 5 Pa(h” d)*||. (4.19)

Let d = V,,,y + do7. Using ro = —F, — Jcdo, (4.19) is equivalent to solving

: Y 1p T ) 2
Jimin _|IF. + Jo[Vin, do] ( ; ) + 1 Pa{h? [V, do] ( . >} I

. Yy 5 Y
= yesrér'l"l,l'}'e?ﬁ”Fc + [Jch,ch()] ( - ) + %Pa{hT[Vm,dg] ( . )}2”
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min __[|F. + [JeVin, — F. — 1o] ( f ) + 3 Pa{hT [V, do] ( f )}2H

yeER™ 1€
_ . i Y 15,51 T . Y a2 v
= it P+ Va7 )+ $Poth (i (¢ D
where g = —F, — 5. An important feature of (4.20) is that it does not involve the Jacobian
matrix J.. We simplify (4.20) to
. Fo | daraT a2
oomin IFe+ I+ 3a(579)"), (4.21)

where J = [Vipy1Hypnugl, § = z ), @ = Pa and 3 = [V,,, do]Th. We discuss how to form

and solve (4.21) efficiently. The solution of this type of nonlinear least squares problem is
studied by Schnabel and Bouaricha in [25]. Their theory shows that when J has full rank
the solution of (4.21) is given by

g = (JTI) 3 () fw — (JTI)LIT(F, + 1ap?), (4.22)
where ¢() and w are defined by
aB) = TJTNTITF + 5+ 1T (JT )L iTa?, (4.23)
w = 3§JTJj)13, (4.24)
and the value of 8, is determined from

min [lg(8)/vell* + [ln(B)[1%, (4.25)

BeR

where [[n(B)||* = [|(F. - PF.) + §(a - Pa)s?||%.

In our situation, since P is a projector matrix and
@— Pé = Pa— PPa= Pa— Pa=0,
n(p) is a constant function. Hence the minimization problem (4.25) is equivalent to

min [[g(B)|- (4.26)

BER

To obtain g, the critical computational work comes from the factorization of JTJ,
since when this factorization is available, all the computations involving (J7TJ )~! can be
achieved through backsolves. For this reason, we discuss the factorization of JTJ. Recall
that J = [Vin+1Hm, g] and H,, = QmR,,. Hence we have

jTj = [Vm+lﬁm7g]T[Vm+1ﬁm’g]
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) ( AL E£V$+1g)
- gTVm+1Em 9Ty

RL R, E£V$+1g )
( gTVm+1FIm ng

([ RT o\ [ Ry, w
= o

where R] is the first m rows of Rm, w= Q£V$+1g, and v = gTg — wTw. The factor-
ization is possible since JTJ is always at least positive semidefinite. After §. is obtained,
(4.19) is solved by

dt = [Vm7 dO]Q*-

However, the calculation of expressions involving (fT.f )~! is impossible if ¥ = 0. We
discuss how to overcome this difficulty. Since J = [Vit1Hm, 9] and Vinia H,, has full rank,
g has to be in the span of {Vin+1Hpn}, which implies that J.dy = ¢ is in the span of
JVin = Vg1 Hyp. When J. has full rank, this implies that do is in the span of {V,,,}, which
in turn implies that d* = do + Vmy™ is in the span of V,,y™. In this situation, based on
previous discussions, we actually would like to solve the tensor model (4.10) in the Krylov
subspace V,, only, i.e.

Jmin I F. + Je(do + 2) + 1 Pa(hT (do + 2))*|, (4.27)
where P is given by (4.8), which is equivalent to solving

min s + Jedo + JeVimy + 3 Pa(hT (do + Vem3))?|l- (4.28)
y m

Using J Vi, = m+1I_Im, H,p = QmPRm, 1o = —F; — Jedg and (4.14), and letting b be the

first m components of QL VL, a, (4.28) is equivalent to

. = = b
yrggltl}n ” —To + Vm+1Hmy + %Vm+lQm < 0 ) (hT(dO + me))zll

= Jggig}n ||Vm+1(||1"0||el — QmBRny — 1Qm ( g ) (AT (do + Vi)l

= min 110m(@hlrolles — Ry — ( 0 ) (W (do + V)P

= min [l — Ryy - b("(do + Vi)Yl (4.29)
y m

where w is the first m components of Q7 ||ro|lez and R}, is the first m rows of Rn. Again
using the techniques for solving the tensor model of nonlinear least squares developed in
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[2], we form the 8 function

4(B) = RTVu(RL) ™ w — hTViy — LTV (RL) " 16(hT (do + Viny))?
= hT(RL) 7w+ hTdy ~ § - 1AT(RL) 542, (4.30)

where § = hT(dy + Vipy) and b = V.Zh, and solve the minimization problem

min [lg(B)]]- (4.31)

Let B« be a solution to (4.31). By the theory established in (2], (4.29) is solved by
ve = [(RR)T (BRI h(Ba)fw + (RE) ™ w — L(RL,) 1082,
Then the tensor step for the system of nonlinear equations is given by
d' = do + V. ‘ _ (4.32)

We examine the cost of solving the tensor model when dy # 0. Since the situation of
7 = 01is less expensive to deal with, we will concentrate on the situation of v # 0. Compared
to the solution of the Newton equation by the GMRES algorithm in a similar situation, the
solution of the tensor model requires a minimal amount of extra work. The major extra
work comes from forming d*, 3, JT¢ and J TF,, each requiring (m + 1) N multiplications
(note that JT& = JT Pa = JTq from the definition of P). Since VI 19 = VI [(~F.—ro) =
VL, F. = ||ro|le1, given VI, F., cost of VT +19 is only a single subtraction. Hence the
cost of factorization of JTJ , which involves the calculation of QEV,,{H g, 9% g and wTw,
is N 4 5m multiplications. The operation count is accumulated from an application of
m Givens rotations costing 4m multiplications, a dot-product of 2 N-vectors costing N
multiplications and a dot-product of 2 m-vectors costing m multiplications. Given §, JT&
and JTF,, the major cost of forming ¢(8) and w defined in (4.23) and (4.24) respectively,
comes from the calculation of §7(J7J)~1. Using the available factorization of JTJ, this can
be done by two backsolves of (m + 1) x (m + 1) triangular systems, which costs (m + 1)2
multiplications. After 37(JTJ)~1 is obtained, the cost of forming ¢(f) and w is three dot-
products of two m-vectors costing 3m multiplications totally. The cost of obtaining 4, using
(4.22) needs two extra backsolves of (m+1)x (m+1) triangular systems, which costs (m+1)?
multiplications, given .§T(j Tj )71, JTaand J TF.. In summary, the total extra work required
by solving the tensor model when the d # 0 is at most (4(m + 1) + 1)N + 2(m+1)?2 4+ 8m
multiplications.

4.6 Preconditioning and matrix free implementation

The success of the GMRES method on a system of linear equations usually depends on
a good preconditioner. The formation and solution of the tensor model is consistent with
preconditioning. When a preconditioner M is used in solving the Newton equation by the
GMRES algorithm, it turned out that the only thing we need to do in the tensor step
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calculation is to replace a by M~1a, and F, by M~1F, (in case when do # 0). The rest of
the solution procedure is unchanged.

Compared to the Newton-GMRES method, the only extra computation involving the
Jacobian matrix in the tensor-GMRES method is the computation of Js in the formation
of the tensor term. In a Jacobian free implementation, this matrix-vector product can be
approximated by the finite difference formula specified by (2.5). Hence the tensor-GMRES
scheme is consistent with matrix free implementation.

4.7 Work comparison

If m steps of GMRES is required for solving the Newton equation, the computational cost
of the Newton-GMRES iteration is m(m + 2)N + mNZ multiplications, and the storage
requirement is (m+2)N [24]. The extra storage required by the tensor-GMRES method is 2
N-vectors. Asanalyzed at the end of Subsection 4.3, the extra computational cost of forming
the tensor model is N + NZ. As analyzed in Subsection 4.5, in the most expensive case the
extra computational cost of solving the tensor model is (4(m + 1)+ 1)N + 2(m + 1)2+8m
multiplications. Hence the combined extra computational cost of formation and solution
of the tensor model in each tensor iteration, compared to an iteration of Newton-GMRES
algorithm, is at most (4(m + 1) + 2)N + 2(m + 1)? + 8m + NZ multiplications. If we
count the operations in flops (counting both multiplications and additions), the total extra
computational operations are at about twice as many. Compared to m(m + 2)N + mNZ,
the cost of solving the Newton equation using the GMRES method, this extra cost is not
significant if m is relatively large.

Because of the memory limitation, it is likely that m is not too large. Hence it is
necessary to restart the GMRES algorithm. However, we should point out that the tensor
model is not formed until the Newton equation is approximately solved by the GMRES
algorithm, or in other words, until the Krylov space that contains the solution to the
Newton equation is found. We form the tensor model only using the Krylov subspace
generated in the last restarted GMRES algorithm. The tensor model has nothing to do
with the intermediate Krylov spaces generated by the GMRES algorithm resulted from
restarts before the final restart. Therefore compared to the total cost of the Newton-
GMRES with restarts, the extra cost of formation and solution of the tensor model is likely
to be minimal for a large portion of nonlinear problems, particularly hard problems that
need many restarts of the GMRES algorithm.

5 Implementation and testing

In the previous section we presented the main new features of our tensor-GMRES method
for nonlinear equations, namely, how we form the quadratic model of the nonlinear function,
and how we solve this model efficiently. In this section first we give the complete algorithm
we have implemented to test these ideas and clarify various aspects of this algorithm and its
computer implementation. Then, we present some results of testing the method on several
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problems.

This section is organized as follows. Subsection 5.1 gives a complete tensor-GMRES al-
gorithm for systems of nonlinear equations and discusses the implementation of each step in
details. In Subsections 5.2-5.4 we will show comparative test results for the tensor-GMRES
algorithm, Algorithm TG, given in Subsection 5.1 versus the Newton-GMRES algorithm,
Algorithm NG, given in Section 2 with the same implementation. Three distinct test prob-
lems., i.e., a Bradu problem, the Broyden Tridiagonal problem and the one-dimensional
Euler equations problem, and several of their variants, were used in the testing. The tests
on the Bradu problem, the Broyden Tridiagonal problem and their variants were performed
on a Sun Super Workstation II+/50 at RIACS using MATLAB. The test on the one-
dimensional Euler equations problem was performed on a Cray Y-MP at NAS facility using
Fortran 90. Test results are summarized and discussed in Subsection 5.5.

5.1 A complete algorithm

This subsection presents Algorithm TG, the full algorithm of the tensor-GMRES method
and discusses implementation issues of this algorithm in details.

Algorithm TG. An iteration of the tensor-GMRES method.
Given z; € RV, Ti—1, Jp € RVN F e RN and Fr_,1 e RN,

(TG-1) Decide whether to stop. If not:

(TG-2) Set s = z4_y — 24, @ = 2(Fp_y — Fy — Jis)/(sTs) and h = s/||s||. Choose
€x € [0,1).

(TG-3) Do GMRES (restart if necessary) to find d* = d + Vimy™ such that
| Fr + Jpd™|| < e,

where dy is the starting point of the last restarted GMRES procedure, and the
columns of V,,, form an orthonormal basis for the Krylov space generated by the
corresponding Arnoldi process. In addition, let H,, be the Hessenberg matrix
generated from the Arnoldi process, and H,, = QmRom be its QR-factorization.
Let RL, be the first m rows of R,,.

(TG-4) f do = 0 or dy € {V,,} then
Solve
in || Fi + Jido + JkViny + 2a{hT(do + Vmy)}?|l (5.1)
where @ = (Jka){(Jka)T(JkVm)}“l(Jka)Ta, by first solving

min flg (8)(= A7 (RL) ™ + hTdo — B — LAT(RL)10g?)),
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to obtain a solution B, where w is the first m components of QL || Fr+
Jidolle1, b is the first m components of QTVI ia, and by = V.Ih.
Then the solution to (5.1) is given by

vt = [(RL)T (RO hag(Ba)fw + (R ™' w — 3(By,) 7062,
where w = AT[(RL)T(RL)]) " h.
Form the tensor step df = do + Vi yl. .
Otherwise (do # 0 and do & {Vin}),

Solve

. fo | 1a T2
i P+ Ji+ (b9 (52
where J = [Vip1 Hp, 1),
a= (,\J[Vma do)){(I[Vims do))T (J[Vin, do])} (I [Vim, dO])Ta
and hy = [Viu, do]Th. This is done by first solving

min llax(8)(= B3 (JTI) TR+ B+ 3h3 (TT )T T a0
with solution B,. Then the solution to (5.2) is given by
b = (ST haga(Bu) fw — (JTI)TIT(F. + 3a63),

where w = A{JTJ)"2h,.
Form the tensor step d = [V;,,, do]¥x-
(TG-5) Choose a new step d from d" and d".

(TG-6) Find A > 0 using a backtracking line search global strategy and form the next
iterate zp41 = zk + Ad.

Several tests are performed to determine whether to stop the algorithm in Step (TG-1).
These stopping criteria are described by Dennis and Schnabel in Chapter 7 of [11]. For the
sake of simplicity, we only use simplified versions of their criteria. The first test determines
whether z, solves the problem (1.1). This is accomplished by using || F(z¢)|| < FTOL, where
a typical value of FTOL is around 1073, but the users can specify their own values for this
tolerance. In our tests this value was set to 1072 since we wanted to push the algorithms
to their limits. The second test determines whether the algorithm has converged or stalled
at z1. It is done by measuring the relative change in the iterates from one step to the next.
We use ||zi — 2k-1]|/lzk-1]] < STPTOL, where a typical STPTOL is around 1078 in our
implementation. Finally, we test if a maximum number of iterations is exceeded. Currently
this value is 150.
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In Step (TG-2), we need to choose the tolerance €k, which is passed to the GMRES
algorithm when it is called to solve the Newton equation at the kth iteration. In (5], Brown
and Saad suggested a sequence ¢, = || F(z)||, where i = (3)F for k = 1,2,---. Since
a good sequence is normally problem related, and again for the sake of simplicity, we use
unchanging €; = 1078 at every iteration for our test problems.

Step (TG-3) calls the normal GMRES linear equations solver. The number of Arnoldi
iterations allowed between restarts is usually set to 20, and the number of maximum restarts
of GMRES allowed is usually set to 150. However, these two values. can be provided by
the users based on their experience. When the tolerance is not reached after maximum
number of restarts, we simply go ahead and use the last computed data. When it returns,
the GMRES algorithm readily provides R} and Q,, thatis presented in m Givens rotations.
One by-product of Step (TG-3) is the Newton-GMRES step.

Step (TG-4) calculates the tensor-GMRES step. It is basically a concised reiterate of
the solution of the tensor model described in the previous section. In Algorithm TG, the
solutions of the two situations when dy = 0 and d; € {Vm}, are combined for succinctness.
The minimization of a quadratic function in one variable is done by using standard root
formula. When a quadratic function has two distinct roots, the root that is smaller in
absolute value is chosen.

Step (TG-5) usually consists of choosing the tensor step direction d* obtained in Step
(TG-4). However, the Newton step direction is chosen instead, when the tensor step di-
rection is not a descent direction for $IIF(z)||?, which rarely occurs in practice but is not
preluded in theory. Since the gradient of 1||F(z)||? is J (z)TF(z), d* is a descent direction
if (d)TJ(z)TF(z) < 0. We discuss how to compute this expression efficiently. At cur-
rent iterate z., on the one hand, when dy = 0, using d* = V,yt, J.V,, = m+1ffm and
F, = —||F.||v; yields

(@) I F,
= (Vay)'JIF,
("Jt)T(JcVM)TFc
= (4) (Vir Hp )T F,
= (ﬁmyt)T(V$+1FC)
= —(Hay") | Felles. (5.3)
The cost of calculating (5.3) is minimal. On the other hand, when dy # 0, using d* =
[Vins dol§*s JeVin = Vipgp1 Hpy and 7o = —F. — J.dy yields :
COR o
([Vin, dolg*)" I F.
= (§")7[JeVim, Jedo] T F.
= (gt)T[VmH Em» —To— FC]TFC

ATvT F
— ~\NT mYm+1+4¢
= () < _,,,g"FC . “FCIIZ ) (5.4)
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The major work in (5.4) is the calculation of VI ,F.. However, since this calculation is
already done in the solution of the tensor step, no extra cost is necessary.

Finally, in Step (TG-6), we use a standard quadratic backtracking line search algorithm
which is given below as Algorithm QB. The merit function L|F(z)|}? is used for measuring
the progress towards the solution.

Algorithm QB Standard quadratic backtracking line search algorithm.

Given a current point ., a search direction d, the directional derivative ¢, and a = 1074,
(QB-1) Set f. = L||F(z.)l|* and z4 = 2. + d.
(QB-2) Set fy = || F(z4)||? and X= 1.

(QB-3) While fy > fo+a-A-£ do

)\temp = _6/(2[f+ - fc - §]),
A = maz{Atemp, A/10};

T4 = 2.+ Ad;
S+ = 3IIF(z )l
EndWhile

When d" is chosen in Step (TG-5), the directional derivative is given by (d™)TJTF,. Its
calculation can be accomplished in a fashion similar to when dt is chosen. When dg = 0,
we can simply replace ' in (5.3) by y™ and calculate —(Hpy™)||Feller. When do # 0

(@I F.
= (do+ Vmy™)TJTF,
- (chO + Jchyn)TFc
= (_Fc — 7o+ Vm+1f{myn)TFc
= —\FdP -1 Fo+ (v") Hr(Visa Fo),

which is easy to calculate given V.1, F.

5.2 Test results for a Bradu problem and its variants

As a first test problem we choose to solve the nonlinear partial differential equation
—~Au=Xxe* in Q, u=0 on I, (5.5)

where A = V2 = Y2 9%/02? is the Laplace operator, = (0,1) x (0,1) and I' is the

boundary of Q. This version of Bradu problem is chosen from a set of nonlinear model
problems collected by Moré [18].
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Figure 1: Results for the Bratu problem, A = 6.5. Diagonal preconditioning. Solid line:
tensor-GMRES; Dotted-line: Newton-GMRES.

With n a positive integer we define h = 1/(n+1) and then a mesh is given by
Mij :{lha]h}) 0_<.7".7.<_n
To approximate problem (5.5) we use the following finite-difference scheme:

Uig1j i1 4o w1 — A%y guis, 1<ij<n (5.6)

h2
wg = 0, if MueT.

In (5.6), uij is an approximation to u(M;;). For-A < 0, (5.5) has a unique solution. For
A > 0, (5.5) may have one, several, or no solutions. In this test, we took n = 32 and A = 6.5,
which yields a system of N = 1024 equations in N unknowns. We tested the tensor-GMRES
method given by Algorithm TG and the Newton-GMRES method giveﬁ by Algorithm NG
described in Section 2. In both algorithms, the standard diagonal preconditioning was used.
The number of Arnoldi iterations allowed between restarts was set to 20 when the GMRES
linear solver was called. The initial guess was chosen as uo = 0.

Figure 1 shows that the tensor-GMRES method has a slight improvement over the
Newton-GMRES counterpart in number of nonlinear iterations. Although this problem is
quite easy to solve for both methods and both methods exhibited quadratic convergence,
the tensor-GMRES was converging a little bit faster. It took the tensor-GMRES method 5
iterations while it took the Newton-GMRES method 6 iterations to reach almost the same
level of accuracy. :

Gince it is difficult to find large singular systems of nonlinear equations in the literature,
we constructed all the singular test problems on our OWI. We give the test results for a
rank one deficient modification of the Bradu problem. This singular problem is constructed
by squaring the last equation in (5.6). The resulting problem has exactly the same solution
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ations. The Newton-GMRES
method is exhibiting linear convergence, while the tensor- GMRES method shows superlinear
convergence. To reach the Same accuracy, it took the tensor-GMRES method 7 iterations
while it took the Newton-GMRES method 21 iterations, The margin of improvement ipn
number of nonlinear iterations is more than 65%. One may notice the linear convergence
behavior of the tensor-GMRES method at the lagt iteration. We Suspect that this is cauged
by the round-off error.

problems where the Jacobian matrix has rank deficiency greater than one. This js the
motivation for the rank two deficiency modification of the Bradu problem. This singular
problem is constructed by Squaring the last two equations in (5.6). Again the resulting
problem has exactly the same solution as the original problem. At the solution, the last
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Figure 3: Results for the rank two deficient modification of the Bratu problem, A = —5.
Diagonal preconditioning. Solid line: tensor-GMRES; Dotted-line: Newton-GMRES.

the Jacobian matrix of the original problem is nonsingular, the new Jacobian matrix has
rank deficiency two. In this test, we took n = 32 and A = —5, which yields a system
of N = 1024 equations in N unknowns. We tested the tensor-GMRES method given by
Algorithm TG and the Newton-GMRES method given by Algorithm NG under the same
implementation. In both algorithms, the standard diagonal preconditioning was used. We
limited the number of Arnoldi iterations between restarts to 20. The initial guess was chosen
as up = [1,1,---,1]T.

Figure 3 shows that the tensor-GMRES method again has a significant improvement
over the Newton-GMRES counterpart in number of nonlinear iterations. The Newton-
GMRES method is exhibiting linear convergence similar to the rank one deficient situation,
while the tensor-GMRES method show superlinear convergence. The convergence pattern
of the tensor-GMRES method is slightly different from the rank one deficient situation. The
convergence here seems to be two-step superlinear, while in the rank one deficient situation
the convergence seems to be one-step superlinear. It took the tensor-GMRES method 6
iterations while it took the Newton-GMRES method 21 iterations to reach almost the same
level of accuracy. The margin of improvement is over 70% in number of nonlinear iterations.

5.3 Test results for the Broyden Tridiagonal problem and its variants

The Broyden Tridiagonal problem is chosen from a standard test set of Moré, Garbow and
Hillstrom [19]. The function is defined as

filz) =3 —-2z)z; —x;-1 — 22541 + 1, for i=1,---,n (5.7)

where 29 = 2,41 = 0 and n can be any positive integer. A root of f = 0 is sought. For
our test, we set n = 1000 which results in a system of 1000 nonlinear equations in 1000
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unknowns. The Jacobian matrix has full rank at the solution. Three tests were performed
on this problem. The standard starting point is zo = [-1,—1,--+,—1]. When calling the
GMRES routine we limited the number of Arnoldi iterations between restarts to 20.

Logarithm of |[F{|

18 05 1 15 2 25 3 35 4 5 [
Rerations
Figure 4: Results for the Broyden Tridiagonal problem. z¢ = [-1,-1,---, —1}%. Diagonal

preconditioning. Solid line: tensor-GMRES; Dotted-line: Newton-GMRES.

Figure 4 shows that the tensor-GMRES algorithm and the Newton-GMRES algorithm
performed about the same, both exhibiting a quadratic convergence. Before the last step,
the tensor-GMRES method was doing a little bit better, knocking down 1 or 2 more digits
in function norm than the Newton-GMRES method. The last step of the tensor-GMRES
broke the trend of the convergence. We believe that this is caused by the round off errors.

Logarithm of ||Fi|
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Figure 5: Results for the Broyden Tridiagonal problem. zo = 10%[—1,-1,---,—1]7. Diag-
onal preconditioning. Solid line: tensor-GMRES; Dotted-line: Newton-GMRES.
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Figure 6: Results for the Broyden Tridiagonal problem. zo = 100 * [-1,-1,---,~1]7.

Diagonal preconditioning. Solid line: tensor-GMRES; Dotted-line: Newton-GMRES.

Since starting from the standard starting point z¢ seems too easy for both algorithms,
we tried to start farther away from z,.

Figure 5 shows the test results of starting from 10 * zo. We see that the tensor-GMRES
method has a moderate improvement over the Newton-GMRES method in number of non-
linear iterations. To reach a similar accuracy, it took the tensor-GMRES method 6 iterations
while taking the Newton-GMRES method 8 iterations.

Figure 6 shows the test results of starting from even farther with 100 zo. This time we
see that the tensor-GMRES method has a significant improvement over the tensor-GMRES
method in number of nonlinear iterations. To reach a similar accuracy, it took the tensor-
GMRES method 6 iterations while taking the Newton-GMRES method 12 iterations. The
margin of improvement is 50%. It seems that for this problem the tensor-GMRES method
is not sensitive to scaling up the starting point as the Newton-GMRES does. _

Next we give the test results for a rank one deficient modification of the Broyden Tridi-
agonal problem. Again the problem was constructed by squaring the last function defined
by (5.7). As discussed before this construction does not alter the solutions to the original
system and results in a system whose Jacobian matrix has rank deficiency one at the so-
lution. In this test, we took n = 1000, z¢ = [~-1,-1,---,—1]. When calling the GMRES
routine we limited the number of Arnoldi iterations between restarts to 20.

Figure 7 shows that the tensor-GMRES method has a significant improvement over the
Newton-GMRES method in number of nonlinear iterations. The N ewton-GMRES method
is exhibiting linear convergence, while the tensor-GMRES method shows superlinear con-
vergence. To reach the same accuracy, it took the tensor-GMRES method 11 iterations
while it took the Newton-GMRES method 22 iterations. The margin of improvement is
50%. _

Finally, we give the test results for a rank two deficient modification of the Broyden
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Tridiagonal problem. The problem was constructed by squaring the last two functions
defined by (5.7). As discussed before this construction does not alter the solutions to the
original system and results in a system whose Jacobian matrix has rank deficiency two at

the solution. In this test, we took n = 1000, zo =

[-1,-1,---,—1]. When calling the

GMRES routine we limited the number Qf Arnoldi iterations between restarts to 20.
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Figure 7: Results for a rank one deficient modification of the Broyden Tridiagonal problem.
zo=[-1,-1,---, —1]T. Diagonal preconditioning. Solid line: tensor-GMRES; Dotted-line:

Newton-GMRES.
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Figure 8: Results for a rank two deficient modification of the Broyden Tridiagonal problem.

Lo = ["'la—]-,' )
Newton-GMRES.

—1)7. Diagonal preconditioning. Solid line: tensor-GMRES; Dotted-line:

Figure 8 shows that the tensor-GMRES method again has a significant improvement over
the Newton-GMRES counterpart in number of nonlinear iterations. The Newton-GMRES
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method is exhibiting linear convergence similar to the rank one deficient situation, while
the tensor-GMRES method show superlinear convergence. The convergence pattern of the
tensor-GMRES method again is slightly different from the rank one deficient situation. The
convergence here seems to be two-step superlinear, while in the rank one deficient situation
the convergence seems to be one-step superlinear. It took the tensor-GMRES method 11
iterations while it took the Newton-GMRES method 22 iterations to reach almost the same
level of accuracy. The margin of improvement is 50% in number of nonlinear iterations.

.

5.4 Test results for one-dimensional Euler equations

One of the target applications for the tensor-Krylov methods is the nonlinear differential
systems arising in physical problems, e.g. aerodynamics. One good model problem is
the quasi-one-dimensional (1D) Euler equations for flow through a nozzle with a given area,
ratio. In particular, transonic conditions which generate a shock within the nozzle present a
difficult test case, where methods typical of practical aerodynamic applications are required.
Such methods include, finite difference, finite element, and unstructured grid finite volume
techniques employing various forms of highly nonlinear algorithm constructions. For our
purposes here, we have chosen one popular form of central finite differences with nonlinear
artificial dissipation, see [21] for general details.
The quasi-1D Euler equations are

F(Q) = ,E(Q)-H(Q)=0 0.0<z<1.0 (5.8)
where
p ' pu 0
Q= [pv} , E=a(z) [pu2 +pJ , H= l'f-paxa(a:)J (5.9)
e u(e + p) 0

with p (density), u (velocity), e (energy), p = (y — 1)(e - 0.5pu?) (pressure), v = 1.4 (ratio
of specific heats), and a(z) = (1. - 4.(1 - a;)z(1 - z)) (the nozzle area ratio), with a; = 0.8 .
For a given area ratio and shock location (here & = 0.7) an exact solution can be obtained
from the method of characteristics.

We elect to use second order central differences

Ui+l — U1
2Az

Opu & Spuj = 3=0,..,J8 Az =1.0/Jy, u;=u(jAz) (5.10)

It is common practice and well known that artificial dissipation must be added to the
discrete central difference approximations in the absence of any other dissipative mechanism,
especially for transonic flows. Nonlinear dissipation as defined in [22], is used where 24
order, D*(Q), and 4t order, D*(Q) difference formulas are employed.

DQ) = Vi(oj1+0;)(A,Q;) (5.11a)
DYQ) = —vx(ajﬂ+aj)(€§4)szxA$Qj) (5.11b)
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with

Vegi = @G —qi-1, Deqi =g41 -G (5.11c)
@ = kymax(Tip, T Ti1)
T, = Ipj+1 = 2p; + il
|Pi+1 + 2pj + pj-l
& = max(0, k4~ ) (5.11d)

where typical values of the constants are kz = 1/4 and k4 = 1/100. The term o; = lu| + ¢
(where ¢ = /(7p/p) is the speed of sound) is a spectral radius scaling.

Py
2

Logarithm of ||F]|

) 20, 40 60 80 100 120 140
fterations

Figure 9: Results for 1D Euler using full nonlinear dissipation, Solid Line: tensor-GMRES;
Dotted-line: Newton-GMRES.

Boundary operators at j = 0 and j = Jn are defined in terms of physical conditions
(taken from exact solution values) and the use of Riemann invariants. For this problem both
inflow and outflow boundaries are subsonic and locally one-dimensional Riemann invariants
are used. The locally one-dimensional Riemann invariants are given in terms of the velocity
component as

Ri=u—2c¢/(y—1) and Ry=u+2¢/(y-1). (5.12)

The Riemann invariants Ry, Ry are associated with the two characteristic velocities Ay =
u — ¢ and Ay = u + ¢ respectively. One other equation is needed so that the three flow
variables can be calculated. We choose S = In(p/p?) where S is entropy. For subsonic
inflow u < ¢ characteristic velocity Ay > 0 carrys information into the domain and therefore
the characteristic variable Rs can be specified along with one other condition. The Riemann
invariant R,, and S are set to exact values. The other characteristic velocity Ay < 0 carries
information outside the domain and therefore, R; is extrapolated from the interior flow
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variables. On subsonic outflow u < ¢ and Ay > 0 carries information outside the domain,
while A; < 0 propagates into the domain, so only R; is fixed to exact values and R, and
In(.9) are extrapolated. Once these three variables are available at the boundary the three
flow variables Q can be obtained. If we consider the boundary procedure as an operator on
the interior data, we can cast the boundary scheme as

B(Q)i=Q:-B(Qit+1)=0 i=0

and

B(Q)i=Q; -B(Qi-1) =0 i=Jy,

which are nonlinear equations at the boundaries.

a9
2,

Logarithm of [[F))

Figure 10: Results for 1D Euler using unlimited dissipation, Solid Line: tensor-GMRES;
Dotted-line: Newton-GMRES.

The total system we shall solve is

_ ] %E(Q); —H(Q); + D(Q)+ D}(Q), j=1,---,J,
]:(Q)_{ B(Q)i:()’ 1=0,Jn "

The Jacobian matrix for (5.13) is obtained in two ways. An approximated Jacobian is
formed analytically except, where due to the non-differential form of the €’s, the nonlinear
coefficients for the artificial dissipations, D?* and D?* are frozen at the linearized state,
Le., they are not linearized. In another form, the Jacobian is obtained through a Freéchet
derivative, where error tolerances are appropriately chosen. The results presented below
are basicly independent of the choice of Jacobian linearization. The order of the system is
N = (Jy +1) x 3. A key element of the success of the solution using the Krylov subspace
methods is the choice of preconditioning. This issue for systems such as (5.13), which are
not diagonally dominate, is not straightforward and is still the sub ject of active research.
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We shall not go into the details of the preconditioner here, and only state that the same
preconditioner is used for both the Algorithm N G and TG so that consistent comparisons
can be made.
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Figure 11: Pressure distribution: Solid Line: Computed; Dotted Line: Exact. (a) and (b)
Full Nonlinear Dissipation; (c) and (d) Unlimited Dissipation.

Figure 9 shows Algorithm NG and Algorithm TG applied to (5.13) for Jy = 200;
N = 603. In the case of Algorithm NG the convergence appears linear taking approximately
125 steps to converge, while Algorithm TG shows about a factor of 6 decrease in the
number of nonlinear iterations and appears to be at least fast linear. To date, our analysis
indicates that the system derived form (5.13) is nonsingular and so we do not consider this
an example similar to the singular ones presented above. But, we have demonstrated, at
least numerically at this time, that the nondifferential nature of the nonlinear dissipation
coefficients in (5.11a-5.11d) is the source of the linear behavior observed. Figure 10 shows
the convergence results with k; = 0, resulting in a quadratic-like convergence from both
Algorithm NG and TG. Nonlinear switching, such as defined in (5.11a-5.11d), is typical of
current numerical algorithms for the Euler and Navier-Stokes equations. They may take a
similar form to (5.11a-5.11d), see [22] or be in the form of limiters for upwind techniques, e.g.
[28],[16]. The nonlinear switching (limiting) is necessary to eliminate overshoots at shocks,
where higher order schemes are limited to lower order which more correctly differences the
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equations across discontinuities. Figure 11, shows the results with and without limiting,
notice the overshoots across the discontinuity which are more pronounced for the unlimited
case. In general, some form of limiting will be required and in these cases Algorithm TG
appears to be capable of at least fast linear convergence in contrast to Algorithm NG'’s slow
linear convergence.

5.5 Summary and discussion of test results

The test results of this section indicate that the tensor-GMRES algorithm that we tested
is more efficient in number of nonlinear iterations than the analogous Newton-GMRES
method on singular and nonsingular problems, and significantly more efficient on problems
where the Jacobian matrix has a small rank deficiency at the solution or the function has
discontinuity. Since no failure was detected for either of the methods in the tests, it is
inconclusive which method would be more robust. We observed that for each nonlinear
iteration, the number of restarts of the GMRES algorithm for solving the Newton equation
was ranging from 3 to 20 (recall that for all test problems the number of Arnoldi iterations
allowed in the GMRES algorithm was set to 20). As discussed in Section 4, in the tensor
algorithm the computation of the tensor step only uses the Krylov subspace that is produced
by the last restarted GMRES algorithm. Statistically, the size of the last Krylov subspace
that is used in the tensor model formation and solution is likely to be half of the number
of Arnoldi iterations allowed in the GMRES algorithm (for example 20/2 = 10 for our
tests). As analyzed in Subsection 4.7, the extra computational cost of each tensor iteration
is only a fraction of the cost of the last restarted GMRES algorithm. Hence for our test
problems (some of them are easy to solve), statistically, the extra cost of one tensor-GMRES
iteration would be ranging from 2.6% (when 20 restarts of GMRES were needed) to 20%
(when 3 restarts of GMRES were needed), compared to the cost of one Newton-GMRES
iteration. In addition, from our experience the tensor-GMRES did not generate iterates
where the Newton equations would be harder to solve. Hence the savings of the tensor-
GMRES algorithm in number of nonlinear iterations can be roughly translated into savings
in overall computational costs, especially for problems where more restarts of the GMRES
algorithm were needed to solve the Newton equations. In general, at each iteration, the
more restarts of the GMRES algorithm that are required for solving the Newton equation,
the lower the extra cost for a tensor-GMRES step. For real world problems, it is likely that
at each nonlinear iteration, the solution of the Newton equation would require a significant
number of restarts of the GMRES algorithm. Hence the extra cost of the tensor-GMRES
method is likely to be minimal in practice.

6 Summary and topics for future research

This paper has introduced the tensor-GMRES method for systems of nonlinear equations.
This method has similar requirement for storage and arithmetic per iteration to the Newton-
GMRES method. This method is also consistent with preconditioning and matrix free
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implementation. An implementation of full nonlinear algorithm using the tensor-GMRES
method has shown to be more efficient on both nonsingular and singular problems than
analogous implementation of the Newton-GMRES method. The efficiency advantage of
the tensor-GMRES method is particularly large on problems where the Newton-GMRES
method exhibits linear convergence (due to singularity or discontinuity).

Based on these results, it would appear worthwhile to continue research on tensor-Krylov
methods on nonlinear equations. The two main topics for future research would appear to be
practical implementation and farther testing of the tensor-GMRES methods for nonlinear
equations, and new tensor-Krylov methods for nonlinear equations. We discuss each of
these briefly.

As seen in Section 5, our implementation is still in early stage. Several directions
can be pursued immediately to improve the current implementation: (1) Scaling in both
the variable space and the function space can be added; (2) Matrix free implementation
of the tensor-GMRES method, which can be achieved in a fashion similar to analogous
implementation of the Newton-GMRES method, can be pursued; (3) More sophisticated
stopping criteria in the nonlinear algorithm can be included; (4) More global convergence
strategies such as model trust region techniques can be integrated. We would like to continue
our testing of the tensor-GMRES method on more practical problems. One interesting task
is to test the tensor-GMRES method on the ARC2D code [21] that is the two dimension
version of the ARC1D code that we tested in Section 5.

Secondly, new tensor-Krylov methods can be developed. An immediate direction that
one can pursue is a tensor-Arnoldi method since the Arnoldi’s method for linear systems is
closely related to the GMRES method for linear systems. A less straightforward direction
that can be pursued in the future is to combine tensor methods with Krylov methods
that use two mutually orthogonal sequences such as BiCG and QMR. We are currently
investigating this possibility.
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